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Stress concentrations due to pore shape are questioned as a fundamental determinant of 
mechanical property porosity relations, especially elastic property porosity relations. On the 
other hand, actual solid load-bearing areas, especially minimum solid areas of porous bodies, 
clearly are a determinant of mechanical property-porosity effects. The correlation of pore 
shape-stress concentration effects with elastic properties of ceramics can be explained by the 
correlation of pore shapes with minimum solid areas. 

1. Introduction 
Mechanical property-porosity relations are generally 
based on one of three types of approach. One geomet- 
rically derives the actual load-bearing areas, neglect- 
ing any stress concentration or related pore shape 
effects other than how they effect the actual load- 
bearing area [1-9]. While some simpler load-bearing 
models use the average solid cross-sectional area, the 
minimum solid cross-sectional area supporting the 
load is more appropriate. For the two basic ways of 
forming porous bodies, namely partial sintering of 
particles or introducing larger voids (e.g. via bubbles 
or fugitive particles), minimum solid (load-bearing) 
areas are respectively the actual sintered or bond areas 
between particles and the minimum web cross-sec- 
tions between pores. While such areas are most readily 
calculated for idealized structure, i.e. regular stackings 
of pores or particles of uniform size and shape [1-8], 
such concepts are readily extended to other bodies, e.g. 
via use of average particle sizes and shapes or combi- 
nations of idealized structures [1-8]. 

A second approach, again based on idealized geo- 
metries and their generalization, is based on pore 
shape and the resulting stress concentration [1, 10, 
11], often the maximum concentration [1, 12], A third 
approach is to instead apply more general mechanical 
(e.g. strain) analysis to bodies of some limited but 
generalized geometry, e.g. where pores are "in the 
mean . . . .  spherical", "uniformly distributed", etc. [1, 
11]. Such analysis may implicitly or explicitly involve 
stress concentrations. Both shape-stress concentra- 
tion and minimum solid area concepts are normally 
and most easily applied to idealized regular arrays of 
identical size and oriented (for non-spherical) par- 
ticles, pores, or both, and should be applicable to non- 
idealized cases by modern computational means. 
However a fundamental question is the applicability 
of such shape-stress concentration concepts to the 
porosity dependence of properties. The solid load- 
bearing area clearly plays a basic role in not only 
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mechanical but all physical properties [1]. Stress con- 
centrations also clearly play a basic role in mechanical 
properties. However, it has been assumed [1, 11, 12], 
with little or no justification, that stress concentration 
effects associated with cracks and other macroscopic 
stress raisers, applied on a microscopic level, deter- 
mine a variety of mechanical, including elastic, behavi- 
ours. Also, while stress concentration concepts are 
generally not applicable to most other physical prop- 
erties, pore shape concepts have been applied to the 
porosity dependence of other properties. 

A detailed examination of stress concentration- 
pore shape effects would be a large subject. This note 
instead presents basic observations showing that 
microstructural stress concentrations, e.g. from pores, 
generally play at best a limited role in determining 
mechanical properties. It further shows both specific 
differences and correlations for pore shape-stress con- 
centration and minimum solid area and crack models 
for mechanical property-porosity data. Two other 
papers address pore shape and minimum solid area 
evaluations [4, 13]. 

2. Pertinence of pore shape-stress 
concentrat ion effects to mechanical 
property-porosity relations 

Consider first elastic properties. Both homogeneous 
and heterogeneous, e.g. porous, bodies follow the 
linear elastic stress-strain behaviour of Hooke's law. 
However, porous bodies differ in that (i) the slopes of 
their stress-strain curves (i.e. their elastic moduli) are 
lower than for corresponding dense (homogeneous) 
bodies, and (ii) their macro- and micro-stresses and 
strains are not the same as they are in homogeneous 
bodies. Porous bodies have varying stresses and 
strains whose magnitudes are determined by pore 
stress concentrations and Hooke's law (which holds to 
significant fractions of the theoretical strengths of 
brittle materials). However, since the net body strain is 
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an average of the local strains reflecting both the pore 
shape and orientation (for non-spherical pores), the 
maximum stress concentration cannot be a major 
determinate of the body strain. On the other hand, 
average stress concentrations must be ~ 0, and hence 
not a basic determinant of body strains since they 
consist of both tensile and compressive components 
(i.e. opposite sign strains) making averages low or 
zero. Changing between tensile and compressive body 
loading switches the spatial locations of tensile and 
compressive strains from pores within the body, so if 
they did not average to zero, there would be different 
elastic responses for compressive and tensile loading. 
On the other hand, stress-strain (and hence modulus) 
behaviour clearly correlates with minimum solid 
(load-bearing) areas [1-5, 9, 13]. 

That microstructural stress concentrations have no 
intrinsic effect on elastic properties is shown by con- 
sidering the effects of stresses between grains. All 
crystalline materials, even cubic ones, have varying 
degrees of elastic anisotropy (EA), often rather sub- 
stantial, as for example in CaF 2, MgO, ThO 2, UO2, 
BaTiO 3, MgA120~, SiC and TiC [14]. Thus, applied 
stresses are heterogeneously distributed in such 
bodies, with maximum concentrations at grain 
boundaries depending on the degree of EA and grain 
misorientations. However, measured polycrystalline 
elastic properties of cubic materials, e.g. MgO, ThO 2, 
UO 2 and MgA1204, agree within about _+ 3% with 
the averages of their single-crystal elastic properties 
[1], i.e. totally neglecting any microstructural stress 
concentration effects due to EA. 

All non-cubic crystalline materials, in addition to 
having EA, also have thermal expansion anisotropy 
(TEA), which adds built-in stresses to those from EA, 
also concentrated at or near the grain'boundaries. Yet 
again, bodies with TEA stresses show no effect on 
elastic properties. Measured polycrystalline and aver- 
aged single-crystal Young's moduli for A1203, BeO 
and ZnO again agree within about + 3% (so long as 
grain sizes are small enough to avoid microcracking) 
[!]. Similarly the elastic properties of composites are 
determined by the properties of the constituents, not 
the microstructural stresses between them [1, 6, 8]. 
Thus, neither basic concepts nor broad polycrystalline 
experience shows any significant direct dependence of 
elastic properties on microstructural stress concentra- 
tions per se. 

Next consider the porosity dependence of tensile 
strength (cy), which is typically quite similar, if not 
identical, to that for Young's modulus (E) [1, 9]. This 
is not surprising since o depends primarily on E, the 
fracture energy (y) and flaw size (C), i.e. cyoc(E~,/C) 1/2 

and Y is known to theoretically be closely related to E 
and indeed, the porosity dependences of Y and E are 
typically similar if not identical [1, 3, 9]. Thus, since cy 
depends on (E3,) 1/2 it also shows a very similar 
porosity dependence to that of E, unless there are 
overriding effects due to flaw size, i.e. where individual 
pores become a major portion of the failure-causing 
flaws [9]. However, flaw sizes are generally consider- 
ably larger than pore sizes in sintered bodies (the 
source of most data) and hence are generally not 
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affected by pore shape and resultant stress concentra- 
tions [1]. Even where pore and flaw sizes begin to be 
comparable, the direct effect of pore shape and res- 
ultant stress concentrations on cy is significantly mitig- 
ated. In such cases, single pores themselves are typical- 
ly not the sole sources of failure; instead, a pore, or a 
collection of a few pores, plus associated cracks are 
now recognized as the sources of failure [1, 9, 15, 16]. 
The occurrence of cracks associated with pores re- 
duces the effect of pore shape and associated stress 
concentration. Further, since tensile strength is a 
weak-link process, the individual or few pores acting 
as a source of failure will typically be those that are 
extreme in dimensions and not necessarily represent- 
ative of the average pore shape. 

The fracture toughness and tensile strength of poly- 
crystalline bodies may be influenced by microstruc- 
tural stresses. TEA (and possibly EA) can reduce 
strengths by microcrack generation [1, 17] or contrib- 
ute to the applied stress to aid failure when the crack 
size is no longer large in comparison to the micro- 
structure [1, 18]. However, in particulate composites 
microstructural stresses have been directly or indi- 
rectly indicated as a source of toughening, strengthen- 
ing, or both, i.e. contrary to the common assumptions 
of weakening from such stresses from pores [1, 19]. 

Consider next other mechanical properties such as 
compressive strength, hardness and wear, all of which 
typically involve substantial compressive loading. 
Properties involving compressive loading of ceramics 
indicate greater porosity dependence i.e. b values of 
6 _+ 3 [1] versus 4 _+ 2 for tensile behaviour in the 
exponential decrease of properties, e -bp, with volume 
fraction porosity P. Whether the greater porosity 
dependence indicated for compressive loading is due 
to local plastic deformation or accumulation of cracks 
associated with pore shape-stress concentrations 
effects [1], or some combination, is uncertain. How- 
ever, porous metals, which should have more local 
plastic deformation due to pore stress concentration, 
have a very similar, if not identical, mechanical 
property porosity dependence to ceramics [1], thus 
questioning the effects of plastic deformation and 
indicating the need for substantial further study. 
Finally, note that the successful models of Gibson and 
Ashby [20] for elastic, toughness and strength behavi- 
our (both tensile and compressive) of very porous, 
cellular materials are basically load-bearing models 
and neglect stress concentrations for most materials, 
e.g. ceramics. 

3. Corre la t ion  b e t w e e n  pore 
shape-stress concent ra t ion  and pore 
s h a p e - m i n i m u m  bond area e f fec ts  

In view of concepts and data questioning a basic 
dependence of mechanical property-porosity depend- 
ence on pore shape-stress concentration effects, one 
can legitimately ask why models based on pore 
shape-stress concentration effects often correlate with 
mechanical property-porosity behaviour. However, 
many pore shape-stress concentration effects can be 
directly related to pore shape-solid area relations. 



This can be most readily seen by examining in more 
detail the commonly used pore shape stress concen- 
tration model for the dependence of elastic properties 
on porosity derived by Rossi [12]. He modified 
Hashin's equation for Young's modulus (E) as a func- 
tion of a low concentration of spherical pores [11]: 

E = Eo(1 - BP)  (1) 
where E o = E when P = 0, and B is a parameter  
dependent on other factors such as Poisson's ratio (v). 
Rossi's modification was based on the observation 
that the B coefficient of Hashin's model partially 
reflected the stress concentration associated with 
spheres. Rossi therefore generalized the B coefficients 
to reflect the maximum stress concentrations of other 
spheroidal shapes (Fig. 1). 

While Equation 1 and the range of B values for 
Rossi's model are similar to those of many other 
stress-based models, this is also true for models based 
on load-bearing area [1]. For example, since the 
average volume fraction porosity (P) is also the aver- 
age cross-sectional area of the porosity, the average 
solid area is simply 1 - P, i.e. Equation 1 with B = 1 
for any pore shape. The minimum solid area can be 
readily calculated for idealized bodies of regularly 
sized, spaced and oriented pores (as considered by 
Rossi) for direct relation to E [1, 3 8]. For an ordered 
array of uniform cylindrical pores oriented parallel 
with the stress axis (for which the average and min- 
imum solid areas are equal) Equation 1 holds, but 
with B = 1 [5]. For an ordered array of uniform 
spheroidal pores (Fig. 1) simple geometry of the rec- 
tangular cells of solid with a pore that makes up such 
an array [1-8] gives the minimum solid area (i.e. 

around the equator of the pore) and hence E / E  o as 

1 - 4 \ 4 K ]  1 - 1.21 = 1 - B ' P  2/3 (2) 

where K = c/a.  Such a calculation can be done for 
other pore geometries [1 3, 7]. The resultant porosity 
dependence of the minimum solid area and hence of 
the related physical properties are commonly closely 
approximated over most of their range of applicability 
for a wide range of pore character by an exponential 
function [1-5, 9], e.g. for Young's modulus 

E = Eo eobP (3) 

where b is directly related to particle stacking and 
hence pore shape [1~4, 13, 16]. For limited porosity 
levels (as for Rossi's model) this is reasonably approx- 
imated by the first term in its series expansion, which 
is again Equation 1 with B = b. 

Rossi's B values for Equation 1 can be compared 
with minimum solid area models as follows. They 
agree exactly for the extreme of prolate spheroids (i.e. 
cylindrical pores) oriented parallel with the stress as 
noted above and shown in Fig. 1. For spherical pores 
equate E / E  o from Equations 1 and 2, i.e. 1 - B P  = 

1 - B ' P  2/3, giving B = B ' P -  1/3 where B' is thus directly 
calculable, and hence B. Plotting the resultant B val- 
ues for a reasonable range of porosity, e.g. P = 0.1 to 
0.4 (since such calculated B values are dependent on P, 
and this approach has no meaning for P = 0), gives 
curves for each P similar to Rossi's (Fig. 1). However, 
while the curves start off identical to Rossi's for cylin- 
drical pores parallel to the stress axis, they fall signific- 
antly below Rossi's curve as the pores become more 
oblate. The magnitudes of the B values calculated 
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Figure 1 Plots of B of Equation 1 for (--) Rossi's stress concentration approach (B ~_ 5a/4c + 3/4) and ( x ) a minimum solid area approach 
(i.e. by equating Equations 1 and 2). 
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above are generally nearly identical with those calcu- 
lated for minimum solid area models, i.e. the b values 
of Equation 3 (hence also approximately those of 
Equation 4). Thus for the extreme of prolate spher- 
oidal (i.e. cylindrical) pores parallel to the stress b ~- 1, 
for spherical pores b-~ 3, and for one limit of oblate 
spheroids (cylindrical pores whose axis is normal to 
the stress axis) b-~ 7. Such P-independent b values are 
close, but deviate somewhat from the calculated 
P-dependent B values, especially for the extreme of 
oblate spheroids. 

Consideration of another extreme of oblate spher- 
oids, i.e. cracks aligned normal to the stress axis, casts 
further doubt on the correctness of Rossi's approach 
and the effects of local stress concentrations for fea- 
tures smaller than the failure-causing flaw size. For 
such oriented cracks his B value is infinite, in marked 
contrast to recent theories for cracked materials. 
These typically follow Equation 1 with B -~ 4.6 and 5, 
respectively, for slit for penny-shaped cracks aligned 
perpendicular to the stress and P replaced by a crack 
density parameter which is equal to or greater than 
the net porosity volume of the cracks [22-23]. The 
disparity between Rossi's B values and the effects of 
cracks is not restricted to c/a = 0. P can be expressed as 
(r~/k) Na 3, where N = number of cracks or pores/ 
volume, a = crack or pore radius and k depends on 
the c/a ratio. For c/a = 0.01, 0.1, and 1, respectively, 
Rossi's B values are 5.27, 5.55, and 8.38, respectively, 
in contrast to B -~ 4.6 to 5 for oriented cracks as noted 
above (or 1.6-1.8 for random cracks). Thus Rossi's B 
values are too high, while those calculated based on 
minimum solid (i.e. bond) area (Fig. 1) are much closer 
to those for crack models, especially since lower B 
values calculated at lower P are pertinent for cracks. 
(Use of the average solid area gives B = 1 for all pore 
shapes, and agrees only with Rossi's and the minimum 
solid area for extreme prolate spherical, i.e. cylindrical, 
pores.) 

4. Summary  and conclusions 
Evaluation shows that stress concentration effects 
from pore shapes provide little or no fundamental 
basis for determining elastic properties, generally not 

much more for tensile strength, but possibly more for 
mechanical properties involving significant compres- 
sion loading. The approximate agreement of mechan- 
ical property porosity models, especially elastic 
property models, based on stress concentrations from 
porosity with elastic data can be attributed to similar, 
but better, correlations between pore shape and min- 
imum solid (load-bearing) area. Thus, minimum solid 
bond area is indicated as having more fundamental 
correlation with mechanical property porosity beha- 
viour. 
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